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Exercise 1

Let f : R3 Ñ R` be a regular enough function, decaying sufficiently fast at infinity. Prove
that the following statements are equivalent:

(i)

ż

R3

Q pf, fq log fdv “ 0;

(ii) log f is a collision invariant;

(iii) f is a Maxwellian distribution, i.e. there exist ρ P R, θ ą 0 and u P R3 such that

f pvq “ ρ

p2πθq
3
2
e´

|v´u|2

2θ for all v P R3;

(iv) Q pf, fq “ 0.

Exercise 2

Let v, v˚ P R3, and ω P S2. In the lecture we defined the post-collisional velocities pv1, v1˚q
associated to the pair of pre-collisional velocities pv, v˚q with the angular parameter ω as:

"

v1 “ v ´ pv ´ v˚q ¨ ω ω,
v1˚ “ v˚ ` pv ´ v˚q ¨ ω ω.

(1)

We denote as pv1, v1˚q pωq the pair of post-collisional velocities defined by (1). In the liter-
ature, one may find another parametrization for the post-collisional velocities, called the
σ-representation, defined for any σ P S2 as

#

v2 “ v`v˚
2 `

|v´v˚|
2 σ,

v2˚ “
v`v˚

2 ´
|v´v˚|

2 σ.
(2)

We denote as pv2, v2˚q pσq the pair of post-collisional velocities defined by (2).

(i) Prove that the two parametrizations are equivalent, i.e. that for any ω P S2, there
exists a unique parameter σ P S2 such that pv1, v1˚q pωq “ pv

2, v2˚q pσq.

Prove also that for any σ P S2 there exists a parameter ω such that pv1, v1˚q pωq “
pv2, v2˚q pσq. Is this choice of ω unique? If not, how many possibilities are there for
ω for any given σ?

(ii) Represent on a picture, for a given pair of pre-collisional velocities pv, v˚q P R6,
v ‰ v˚, and a given angular parameter ω P S2, the associated pair of post-collisional
velocities pv1, v1˚q pωq. Represent also the vector σ associated to ω.
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(iii) We have seen in the lecture that the collision kernel for the hard sphere model is
given by |pv ´ v˚q ¨ ω|, that is the collision term of the Boltzmann equation writes:

Q pf, fq “

ż

R3

ż

S2
|pv ´ v˚q ¨ ω|

`

f 1f 1˚ ´ ff˚
˘

dω dv˚. (3)

Prove that in the σ-representation the hard sphere collision kernel is given by
|v ´ v˚|, i.e.:

Q pf, fq “

ż

R3

ż

S2

|v ´ v˚|

2

`

f2f2˚ ´ ff˚
˘

dσ dv˚, (4)

(where f2 “ f pv2q and f2˚ “ f pv2˚q).

Exercise 3

In this exercise we will study the explicit kernel of a power law potential.

In order to do so, we first introduce some basic properties of motion of a particle in R3.
Let U : R` Ñ r0,`8q a radial potential, and the force F : R3 Ñ R associated to it
defined as

F pxq :“ ´∇x pU p|x|qq . (5)

A particle submitted to F satisfies Newton’s equation, in the sense that its position and
velocity px ptq , v ptqq solve

"

Btx ptq “ v ptq ,
Btv ptq “ F px ptqq .

(6)

Once fixed the initial condition px p0q , v p0qq “ px0, v0q we know the solution to (6) is
unique.

(i) Prove that the angular momentum1 L ptq :“ x ptq ^ v ptq is conserved. Prove that
the movement of the particle lies in a plane.

Hint: For two generic vectors u, w P R3 what geometical property do u, w and
u^ w fulfill?

(ii) Let Ec ptq and Ep ptq be respectively the kinetic and potential energy of the particle
at time t, i.e.

Ec ptq “
1

2
|v ptq|2 , Ep ptq “ U p|x ptq|q . (8)

Show that the total energy of the system Etot ptq “ Ec ptq`Ep ptq is conserved in time
if px ptq , v ptqq is a solution of (6).

1Recall that given two vectors u,w P R3 with u ^ w we denote the vector product between u and w,
which is defined as

u^ w “

¨

˝

u2w3 ´ u3w2

u3w1 ´ u1w3

u1w2 ´ u2w1

˛

‚. (7)
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(iii) From point (i) the motion of the particle lays in the plain spanned by x0 and v0. Con-
sider the system of coordinates so that the component along the third component is
zero. Furthermore on the plain of motion consider polar coordinates, so that any vec-
tor x can be represented as x “ pρ cosα, ρ sinα, 0q in a suitable basis. Let ρ ptq , α ptq
the polar coordinates associated to x ptq (i.e. x ptq “ pρ ptq cosα ptq , ρ ptq sinα ptq , 0q).
Find the expression of Ec ptq and Etot ptq in terms of ρ ptq , α ptq.

Assume now that U is compactly supported, that is U pρq “ 0 for ρ ą σ for some real
σ ą 0 and decreasing in ρ. Let us assume in addition that |x0| ą σ, v0 “ ´V e1 with
V ą 0.

For small times the motion of the particle is free (as long as we are outside of the support of
the potential v ptq is constant); we assume that initially the particle approaches the origin
with impact parameter p P p0, σq, where the impact parameter is defined as p “ x0 ¨e2 (i.e.,
the trajectory can be written for small times as x ptq “ pt´ Cq v0 ` pe2 with a suitable
real constant C, see also Figure 1 below).

Figure 1: The movement of the particle through the support of the potential.

(iv) Using the repulsive property of the potential, prove that the distance ρ between the
particle and the origin has a single minimum ρ0.

Suppose that t0 denotes the time at which the minimum is reached. Consider the line
between the origin and x pt0q (the so-called apse line), and define as θ the angle between
e1 and this line. The angle θ is called the deviation angle.
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(v) Prove that the trajectory of x ptq is symmetric with respect to this minimum, i.e.
we have for any t P R

ρ pt0 ` tq “ ρ pt0 ´ tq , α pt0 ` tq ´ θ “ ´pα pt0 ´ tq ´ θq . (9)

(vi) In the case of the potential with cut-off, prove that the conservation of the total
energy and the angular momentum respectively write:

"

1
2

`

9ρ2 ` ρ2 9α2
˘

` U pρq “ 1
2V

2 ` U pσq ,
ρ2 9α “ pV,

(10)

where 9ρ and 9α denote respectively the time derivatives of ρ and α.

Hint: Consider the total energy and the angular momentum at the point xin,
where the particle enters the support of the potential (that is, the first time that
|x ptq| “ σ).

(vii) We denote as t1 the time such that x pt1q “ xin “ σ pcosα pt1q , sinα pt1q , 0q. Prove
that

θ “

ż t0

t1

9α ptq dt` arcsin
´ p

σ

¯

. (11)

(viii) Prove the following identity:

ż t0

t1

9α ptq dt “
pV
?

2

ż σ

ρ0

1

w2

c

V 2

2

´

1´ p2

w2

¯

´ U pwq ` U pσq

dw. (12)

Hint: Use the conservation laws (10) to find an expression for 9ρ and 9α in terms of
ρ only, write 9α “ 9α

9ρ 9ρ, substitute 9α
9ρ with a function of ρ only, integrate in time and

change variables as ρ ptq “ w.

(ix) Find an equation satisfied by the minimal distance ρ0. Up to assume that we can
solve this equation, deduce an explicit expression of θ (the expression (12) is of
course not explicit, since it relies on determining the quantity 9α).

Consider now U pρq “ kρ1´n in its support. The explicit expression of θ reads:

θ “
pV
?

2

ż σ

ρ0

1

w2

c

V 2

2

´

1´ p2

w2

¯

´ k
wn´1 `

k
σn´1

dw ` arcsin
´ p

σ

¯

. (13)

(x) Prove that, thanks to a change of variables, the deviation angle θ can be written as:

θ “

ż x̄

λ

1
b

1´ x2 ´
`

x
b

˘n´1
dx` arcsin

´ p

σ

¯

, (14)

with

λ “
p

σ

c

1`
2k

V 2σn´1
, b “ p

ˆ

V 2

2k
`

k

σn´1

˙

1
n´1

, (15)

and x̄ solving the equation 1´ x̄2 ´
`

x̄
b

˘n´1
“ 0.
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(xi) Finally consider the limit σ Ñ `8 (which corresponds to relaxing the cut-off on
the support of the potential). Recall that the collision kernel is written as

B pθ, V q “ V p pθq Bθp pθq . (16)

Prove that in the case of the inverse power law potential U pρq “ kρ1´n without
cut-off, the collision kernel has the form:

B pθ, V q “ V γb pθq , (17)

with γ “ n´5
n´1 , and where b is seen as a function of θ through (14).
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