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Exercise 1

Let f : R3 — R, be a regular enough function, decaying sufficiently fast at infinity. Prove
that the following statements are equivalent:

0 [ Q.o fao =0
(ii) log f is a collision invariant;

(iii) f is a Maxwellian distribution, i.e. there exist p € R, # > 0 and u € R3 such that

U—U2
f ()= ﬁeil =3 for all v e R3;
w0) 2

(iv) Q(f,f) =0.

Exercise 2

Let v, v, € R3, and w € S2. In the lecture we defined the post-collisional velocities (v, v%,)
associated to the pair of pre-collisional velocities (v, vy) with the angular parameter w as:

V=0v—(v—vy) ww,
Ve =0+ (V—04) - w w.

(1)

We denote as (v/,v),) (w) the pair of post-collisional velocities defined by (1). In the liter-
ature, one may find another parametrization for the post-collisional velocities, called the
o-representation, defined for any o € S? as

o = v+2v* + \U—;*\ o, 5
no_ vtvg  |u—vs| (2)
Uy = T3 5 0.

We denote as (v”,v}) (o) the pair of post-collisional velocities defined by (2).

(i) Prove that the two parametrizations are equivalent, i.e. that for any w € S?, there
exists a unique parameter o € S? such that (v',v}) (w) = (v",v%) (o).

Prove also that for any o € S? there exists a parameter w such that (v/,v}) (w) =
(v",vY) (o). Is this choice of w unique? If not, how many possibilities are there for
w for any given o7

(ii) Represent on a picture, for a given pair of pre-collisional velocities (v,v,) € RS,
v # vy, and a given angular parameter w € S?, the associated pair of post-collisional
velocities (v, v}) (w). Represent also the vector o associated to w.



(iii) We have seen in the lecture that the collision kernel for the hard sphere model is
given by |(v — vy) - w|, that is the collision term of the Boltzmann equation writes:

QUA = ||| lto= vl (7 = F1) de do, ®

Prove that in the o-representation the hard sphere collision kernel is given by
|v — vy, Le

Q1) - ffg W= vel (11— 1) do av, ()

(where f” = f(v") and fI =

Exercise 3

In this exercise we will study the explicit kernel of a power law potential.

In order to do so, we first introduce some basic properties of motion of a particle in R3.
Let U : R, — [0,+0) a radial potential, and the force F' : R® — R associated to it
defined as

F(z) == =V (U (|z])) - (5)

A particle submitted to F satisfies Newton’s equation, in the sense that its position and
velocity (x (t), v (t)) solve

o (t) = F (2 (1)) . (6)

Once fixed the initial condition (z (0),v(0)) = (zo,v9) we know the solution to (6) is
unique.
(i) Prove that the angular momentum® L (t) := x (t) A v (t) is conserved. Prove that

the movement of the particle lies in a plane.

Hint: For two generic vectors u, w € R® what geometical property do u, w and
u A w fulfill?

(i) Let & (t) and &, (t) be respectively the kinetic and potential energy of the particle
at time ¢, i.e.

E(t) =5 lv (), & (t) = U (= (1)) (8)

Show that the total energy of the system &t (t) = & () + &, (¢) is conserved in time
if (x (t),v (t)) is a solution of (6).

'Recall that given two vectors u,w € R® with u A w we denote the vector product between v and w,

which is defined as
U2W3 — U3W2
U AW = Uswil — U1W3 . (7)

U1w2 — U2W1



(iii) From point (i) the motion of the particle lays in the plain spanned by z¢ and vy. Con-
sider the system of coordinates so that the component along the third component is
zero. Furthermore on the plain of motion consider polar coordinates, so that any vec-
tor & can be represented as x = (pcos a, psin«, 0) in a suitable basis. Let p (t), « (t)
the polar coordinates associated to x (t) (i.e. z (t) = (p (t)cosa (t), p (t)sina (t),0)).
Find the expression of & (¢) and & (t) in terms of p (t), a(t).

Assume now that U is compactly supported, that is U (p) = 0 for p > o for some real
o > 0 and decreasing in p. Let us assume in addition that |zg| > o, v9 = —Ve; with
V >0.

For small times the motion of the particle is free (as long as we are outside of the support of
the potential v (¢) is constant); we assume that initially the particle approaches the origin
with impact parameter p € (0, o), where the impact parameter is defined as p = zp-e2 (i.e.,
the trajectory can be written for small times as z (t) = (t — C)vg + pes with a suitable
real constant C, see also Figure 1 below).

Figure 1: The movement of the particle through the support of the potential.

(iv) Using the repulsive property of the potential, prove that the distance p between the
particle and the origin has a single minimum py.

Suppose that ¢ty denotes the time at which the minimum is reached. Consider the line
between the origin and z (¢9) (the so-called apse line), and define as € the angle between
e1 and this line. The angle 0 is called the deviation angle.



(v) Prove that the trajectory of z (¢) is symmetric with respect to this minimum, i.e.
we have for any t € R

p(to+1t)=plto—1t), a(to+1t) —0=—(a(to—1t)—0). (9)

(vi) In the case of the potential with cut-off, prove that the conservation of the total
energy and the angular momentum respectively write:

(PP +p%2) +U (p) = 5V2+ U (0), 10
2 V. ( )
pra=Dpv,
where p and & denote respectively the time derivatives of p and a.

Hint: Consider the total energy and the angular momentum at the point x;,,
where the particle enters the support of the potential (that is, the first time that

[z ()] = o).

(vii) We denote as t; the time such that z (1) = zi, = o (cosa (t1),sina (t1),0). Prove
that

0 = Jto & (t) dt + arcsin (g) . (11)

1

(viii) Prove the following identity:

dw. (12)

L. D=7 Lo \/V2 1_— —U(w)+U(U)

Hint: Use the conservation laws (10) to find an expression for p and & in terms of

p only, write & = % p, substitute % with a function of p only, integrate in time and
change variables as p (t) = w.

(ix) Find an equation satisfied by the minimal distance pg. Up to assume that we can
solve this equation, deduce an explicit expression of 6 (the expression (12) is of
course not explicit, since it relies on determining the quantity ¢).

Consider now U (p) = kp'~™ in its support. The explicit expression of # reads:

dw + arcsin (g) . (13)

wn—1 on—1

Lo \/V2 _ﬁ _ _k k

(x) Prove that, thanks to a change of variables, the deviation angle 6 can be written as:

(D
f o d:v + arcsin (J) , (14)
Vi-e - (5)"
with
1
P 2k V2 E \" 1
A= 1+——— b= — 15
o +V20”_1’ <2k T ’ (1)
and Z solving the equation 1 — 72 — (%)n '—o.
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(xi) Finally consider the limit ¢ — 400 (which corresponds to relaxing the cut-off on
the support of the potential). Recall that the collision kernel is written as

B(0,V) =Vp(0)dep(0). (16)

Prove that in the case of the inverse power law potential U (p) = kp!~" without
cut-off, the collision kernel has the form:

B(O,V) =Vb(0), (17)

with v = 2=2 and where b is seen as a function of 6 through (14).



