

Kinetic Equations

Text of the Exercises

– 29.04.2021 –

Teachers: Prof. Chiara Saffirio, Dr. Théophile Dolmaire

Assistant: Dr. Daniele Dimonte – daniele.dimonte@unibas.ch

Exercise 1

Let $f : \mathbb{R}^3 \rightarrow \mathbb{R}_+$ be a regular enough function, decaying sufficiently fast at infinity. Prove that the following statements are equivalent:

- (i) $\int_{\mathbb{R}^3} Q(f, f) \log f dv = 0$;
- (ii) $\log f$ is a collision invariant;
- (iii) f is a Maxwellian distribution, i.e. there exist $\rho \in \mathbb{R}$, $\theta > 0$ and $u \in \mathbb{R}^3$ such that $f(v) = \frac{\rho}{(2\pi\theta)^{\frac{3}{2}}} e^{-\frac{|v-u|^2}{2\theta}}$ for all $v \in \mathbb{R}^3$;
- (iv) $Q(f, f) = 0$.

Exercise 2

Let $v, v_* \in \mathbb{R}^3$, and $\omega \in \mathbb{S}^2$. In the lecture we defined the post-collisional velocities (v', v'_*) associated to the pair of pre-collisional velocities (v, v_*) with the angular parameter ω as:

$$\begin{cases} v' = v - (v - v_*) \cdot \omega \omega, \\ v'_* = v_* + (v - v_*) \cdot \omega \omega. \end{cases} \quad (1)$$

We denote as $(v', v'_*)(\omega)$ the pair of post-collisional velocities defined by (1). In the literature, one may find another parametrization for the post-collisional velocities, called the σ -representation, defined for any $\sigma \in \mathbb{S}^2$ as

$$\begin{cases} v'' = \frac{v+v_*}{2} + \frac{|v-v_*|}{2} \sigma, \\ v''_* = \frac{v+v_*}{2} - \frac{|v-v_*|}{2} \sigma. \end{cases} \quad (2)$$

We denote as $(v'', v''_*)(\sigma)$ the pair of post-collisional velocities defined by (2).

- (i) Prove that the two parametrizations are equivalent, i.e. that for any $\omega \in \mathbb{S}^2$, there exists a unique parameter $\sigma \in \mathbb{S}^2$ such that $(v', v'_*)(\omega) = (v'', v''_*)(\sigma)$.

Prove also that for any $\sigma \in \mathbb{S}^2$ there exists a parameter ω such that $(v', v'_*)(\omega) = (v'', v''_*)(\sigma)$. Is this choice of ω unique? If not, how many possibilities are there for ω for any given σ ?

- (ii) Represent on a picture, for a given pair of pre-collisional velocities $(v, v_*) \in \mathbb{R}^6$, $v \neq v_*$, and a given angular parameter $\omega \in \mathbb{S}^2$, the associated pair of post-collisional velocities $(v', v'_*)(\omega)$. Represent also the vector σ associated to ω .

(iii) We have seen in the lecture that the collision kernel for the hard sphere model is given by $|(v - v_*) \cdot \omega|$, that is the collision term of the Boltzmann equation writes:

$$Q(f, f) = \int_{\mathbb{R}^3} \int_{\mathbb{S}^2} |(v - v_*) \cdot \omega| (f' f'_* - f f_*) d\omega dv_*. \quad (3)$$

Prove that in the σ -representation the hard sphere collision kernel is given by $|v - v_*|$, i.e.:

$$Q(f, f) = \int_{\mathbb{R}^3} \int_{\mathbb{S}^2} \frac{|v - v_*|}{2} (f'' f''_* - f f_*) d\sigma dv_*, \quad (4)$$

(where $f'' = f(v'')$ and $f''_* = f(v''_*)$).

Exercise 3

In this exercise we will study the explicit kernel of a power law potential.

In order to do so, we first introduce some basic properties of motion of a particle in \mathbb{R}^3 . Let $U : \mathbb{R}_+ \rightarrow [0, +\infty)$ a radial potential, and the force $F : \mathbb{R}^3 \rightarrow \mathbb{R}$ associated to it defined as

$$F(x) := -\nabla_x(U(|x|)). \quad (5)$$

A particle submitted to F satisfies Newton's equation, in the sense that its position and velocity $(x(t), v(t))$ solve

$$\begin{cases} \partial_t x(t) = v(t), \\ \partial_t v(t) = F(x(t)). \end{cases} \quad (6)$$

Once fixed the initial condition $(x(0), v(0)) = (x_0, v_0)$ we know the solution to (6) is unique.

(i) Prove that the *angular momentum*¹ $L(t) := x(t) \wedge v(t)$ is conserved. Prove that the movement of the particle lies in a plane.

Hint: For two generic vectors $u, w \in \mathbb{R}^3$ what geometrical property do u, w and $u \wedge w$ fulfill?

(ii) Let $\mathcal{E}_c(t)$ and $\mathcal{E}_p(t)$ be respectively the *kinetic and potential energy of the particle* at time t , i.e.

$$\mathcal{E}_c(t) = \frac{1}{2} |v(t)|^2, \quad \mathcal{E}_p(t) = U(|x(t)|). \quad (8)$$

Show that the total energy of the system $\mathcal{E}_{tot}(t) = \mathcal{E}_c(t) + \mathcal{E}_p(t)$ is conserved in time if $(x(t), v(t))$ is a solution of (6).

¹Recall that given two vectors $u, w \in \mathbb{R}^3$ with $u \wedge w$ we denote the **vector product** between u and w , which is defined as

$$u \wedge w = \begin{pmatrix} u_2 w_3 - u_3 w_2 \\ u_3 w_1 - u_1 w_3 \\ u_1 w_2 - u_2 w_1 \end{pmatrix}. \quad (7)$$

(iii) From point (i) the motion of the particle lays in the plain spanned by x_0 and v_0 . Consider the system of coordinates so that the component along the third component is zero. Furthermore on the plain of motion consider polar coordinates, so that any vector x can be represented as $x = (\rho \cos \alpha, \rho \sin \alpha, 0)$ in a suitable basis. Let $\rho(t)$, $\alpha(t)$ the polar coordinates associated to $x(t)$ (i.e. $x(t) = (\rho(t) \cos \alpha(t), \rho(t) \sin \alpha(t), 0)$). Find the expression of $\mathcal{E}_c(t)$ and $\mathcal{E}_{tot}(t)$ in terms of $\rho(t)$, $\alpha(t)$.

Assume now that U is compactly supported, that is $U(\rho) = 0$ for $\rho > \sigma$ for some real $\sigma > 0$ and decreasing in ρ . Let us assume in addition that $|x_0| > \sigma$, $v_0 = -Ve_1$ with $V > 0$.

For small times the motion of the particle is free (as long as we are outside of the support of the potential $v(t)$ is constant); we assume that initially the particle approaches the origin with impact parameter $p \in (0, \sigma)$, where the impact parameter is defined as $p = x_0 \cdot e_2$ (i.e., the trajectory can be written for small times as $x(t) = (t - C)v_0 + pe_2$ with a suitable real constant C , see also Figure 1 below).

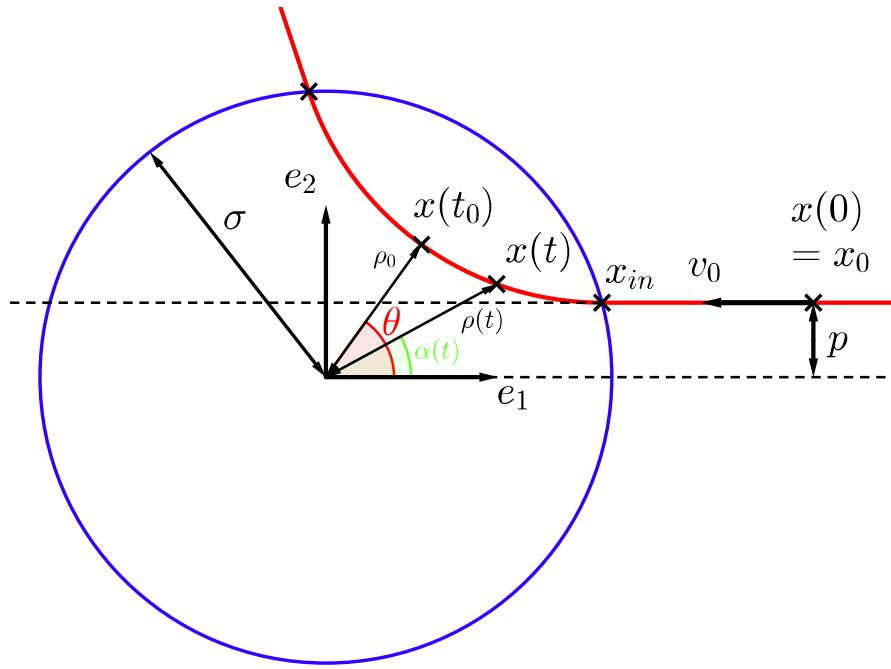


Figure 1: The movement of the particle through the support of the potential.

(iv) Using the repulsive property of the potential, prove that the distance ρ between the particle and the origin has a single minimum ρ_0 .

Suppose that t_0 denotes the time at which the minimum is reached. Consider the line between the origin and $x(t_0)$ (the so-called *apse line*), and define as θ the angle between e_1 and this line. The angle θ is called the *deviation angle*.

(v) Prove that the trajectory of $x(t)$ is symmetric with respect to this minimum, i.e. we have for any $t \in \mathbb{R}$

$$\rho(t_0 + t) = \rho(t_0 - t), \quad \alpha(t_0 + t) - \theta = -(\alpha(t_0 - t) - \theta). \quad (9)$$

(vi) In the case of the potential with cut-off, prove that the conservation of the total energy and the angular momentum respectively write:

$$\begin{cases} \frac{1}{2}(\dot{\rho}^2 + \rho^2\dot{\alpha}^2) + U(\rho) = \frac{1}{2}V^2 + U(\sigma), \\ \rho^2\dot{\alpha} = pV, \end{cases} \quad (10)$$

where $\dot{\rho}$ and $\dot{\alpha}$ denote respectively the time derivatives of ρ and α .

Hint: Consider the total energy and the angular momentum at the point x_{in} , where the particle enters the support of the potential (that is, the first time that $|x(t)| = \sigma$).

(vii) We denote as t_1 the time such that $x(t_1) = x_{in} = \sigma(\cos \alpha(t_1), \sin \alpha(t_1), 0)$. Prove that

$$\theta = \int_{t_1}^{t_0} \dot{\alpha}(t) dt + \arcsin\left(\frac{p}{\sigma}\right). \quad (11)$$

(viii) Prove the following identity:

$$\int_{t_1}^{t_0} \dot{\alpha}(t) dt = \frac{pV}{\sqrt{2}} \int_{\rho_0}^{\sigma} \frac{1}{w^2 \sqrt{\frac{V^2}{2} \left(1 - \frac{p^2}{w^2}\right) - U(w) + U(\sigma)}} dw. \quad (12)$$

Hint: Use the conservation laws (10) to find an expression for $\dot{\rho}$ and $\dot{\alpha}$ in terms of ρ only, write $\dot{\alpha} = \frac{\dot{\alpha}}{\dot{\rho}}\dot{\rho}$, substitute $\frac{\dot{\alpha}}{\dot{\rho}}$ with a function of ρ only, integrate in time and change variables as $\rho(t) = w$.

(ix) Find an equation satisfied by the minimal distance ρ_0 . Up to assume that we can solve this equation, deduce an explicit expression of θ (the expression (12) is of course not explicit, since it relies on determining the quantity $\dot{\alpha}$).

Consider now $U(\rho) = k\rho^{1-n}$ in its support. The explicit expression of θ reads:

$$\theta = \frac{pV}{\sqrt{2}} \int_{\rho_0}^{\sigma} \frac{1}{w^2 \sqrt{\frac{V^2}{2} \left(1 - \frac{p^2}{w^2}\right) - \frac{k}{w^{n-1}} + \frac{k}{\sigma^{n-1}}}} dw + \arcsin\left(\frac{p}{\sigma}\right). \quad (13)$$

(x) Prove that, thanks to a change of variables, the deviation angle θ can be written as:

$$\theta = \int_{\lambda}^{\bar{x}} \frac{1}{\sqrt{1 - x^2 - \left(\frac{x}{b}\right)^{n-1}}} dx + \arcsin\left(\frac{p}{\sigma}\right), \quad (14)$$

with

$$\lambda = \frac{p}{\sigma} \sqrt{1 + \frac{2k}{V^2 \sigma^{n-1}}}, \quad b = p \left(\frac{V^2}{2k} + \frac{k}{\sigma^{n-1}}\right)^{\frac{1}{n-1}}, \quad (15)$$

and \bar{x} solving the equation $1 - \bar{x}^2 - \left(\frac{\bar{x}}{b}\right)^{n-1} = 0$.

(xi) Finally consider the limit $\sigma \rightarrow +\infty$ (which corresponds to relaxing the cut-off on the support of the potential). Recall that the collision kernel is written as

$$B(\theta, V) = V p(\theta) \partial_\theta p(\theta). \quad (16)$$

Prove that in the case of the inverse power law potential $U(\rho) = k\rho^{1-n}$ **without cut-off**, the collision kernel has the form:

$$B(\theta, V) = V^\gamma b(\theta), \quad (17)$$

with $\gamma = \frac{n-5}{n-1}$, and where b is seen as a function of θ through (14).